11 research outputs found

    Observation of Arc Behaviour in TIG/MIG Hybrid Welding Process

    Get PDF
    In this project, the influence of TIG currents's variation on arc stability of TIG/MIG hybrid welding was studied by comparing with MIG welding process. The welding current-voltage waveform was analyzed to characterize the arc stability of the MIG arc. From the observations, the introduction of TIG arc as low as 60 A of current significantly change the MIG arc stability in TIG/MIG hybrid welding. The length of MIG arc in TIG/MIG welding increased with the introduction of the TIG arc as compared with MIG welding. The increase of arc length was due to the arc interaction between the TIG arc and MIG arc, which is affecting the wire melting rate. At the maximum TIG current, the diameter of the molten droplet decreased with the increment of droplet transfer frequency. © Published under licence by IOP Publishing Ltd

    Preparation and characterization of calcium hydroxyphosphate (hydroxyapatite) from tilapia fish bones and scales via calcination method

    Get PDF
    Calcium hydroxyphosphate (hydroxyapatite) is a calcium phosphate that is widely used in biomedical application. Hydroxyapatite is an excellent component for bone substitutes for their chemical and structural similarity to natural bone component. In this research, hydroxyapatite was synthesized from tilapia fish bones and scales using calcination method with 3 different temperatures namely 1000 °C, 900 °C and 800 °C. The obtained hydroxyapatite powder was characterized using several techniques such as Fourier-Transform infrared spectroscopy Attenuated total reflection (FTIR-ATR), scanning electron microscope (SEM), proximate analysis and X-ray diffraction (XRD). The results indicated that temperature 1000 °C has the highest weight loss with 21.825 g compared to the temperature 800 °C and 900 °C. From FTIR-ATR analysis, the presence of characteristic peaks for hydroxyl group, phosphate groups and water molecule indicated that the powder were hydroxyapatite. SEM results showed that increasing temperature had led to more dense structure. The hydroxyapatite powder were further analysed for their proximate analysis. The results proved that the highest contents of ash, fat, moisture and crude protein were observed at 1000 °C as compared to 900 °C and 800 °C. Based on this study, it revealed that produced pure hydroxyapatite from natural resources could be a potential candidate for food industry as protein enhancer

    Observation of Metal Transfer in Plasma MIG Welding Process

    No full text

    Study on factors affecting the droplet temperature in plasma MIG welding process

    No full text
    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially, when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reduce the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment to expand upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified

    Numerical Analysis of Metal Transfer Process in Plasma MIG Welding

    No full text
    In plasma MIG welding, inert gas introduced from the torch nozzle is ionized in the upstream region of the MIG arc, which is termed “plasma”. This study aims to clarify the effect of the plasma on the metal-transfer process in the plasma MIG welding through numerical analysis. As a result, the plasma with a temperature of approximately 10,000 K was found to be formed around the wire tip. The MIG arc temperature around the wire tip was 11,000 K at the maximum, which was lower than that of the conventional MIG welding by approximately 1000 K. This difference was caused by the decreased current density around the wire tip due to the influence of the plasma. The droplet temperature was also decreased by 400 K due to this lower current density. The amount of the metal vapor evaporated from the droplet was decreased compared to that of the conventional MIG welding due to the lower droplet temperature. This might lead to a decrease in fume formation generally known in the plasma MIG welding. In the conventional MIG welding, the arc attachment was concentrated around the wire tip, leading to a higher current density. However, in the plasma MIG welding, the plasma transported to the surrounding of the wire tip increases the electric conductivity in that region, due to the influence of the metal vapor mixture. This leads to the dispersion of the arc attachment toward the wire root. Consequently, the current density in the plasma MIG welding was found to decrease compared with that of the conventional MIG welding. The lower current density in plasma MIG welding decreases the Lorenz force acting on the wire neck, thus delaying droplet detachment to make the droplet diameter larger and the metal transfer frequency smaller. The latter was about 20% of that in the conventional MIG welding

    The Study of Copper Alloy with Graphene Additive via x-Ray Diffraction

    No full text
    This study evaluated the effect of milling speed and compaction pressure on the densification and morphology of the CuZn-Gr composite. The composite was prepared by using the powder metallurgy technique. The effect on the microstructural and compaction was determined based on different milling speeds. The different milling speeds involved were 175, 200, 225, and 250 rpm. Meanwhile, the different compaction pressures used in this study were 127, 250, 374, and 500 MPa. The properties of the milled powder gave the result to green density and densification parameters. The XRD pattern of Cu and Zn broadened as milling time increased

    Assessment of Electric Arc Furnace (EAF) Steel Slag Waste’s Recycling Options into Value Added Green Products: A Review

    No full text
    Steel slag is one of the most common waste products from the steelmaking industry. Conventional methods of slag disposal can cause negative impacts on humans and the environment. In this paper, the process of steel and steel slag production, physical and chemical properties, and potential options of slag recycling were reviewed. Since steel is mainly produced through an electric arc furnace (EAF) in Malaysia, most of the recycling options reviewed in this paper focused on EAF slag and the strengths and weaknesses of each recycle option were outlined. Based on the reports from previous studies, it was found that only a portion of EAF slag is recycled into more straightforward, but lower added value applications such as aggregates for the construction industry and filter/absorber for wastewater treatments. On the other hand, higher added value recycling options for EAF slag that are more complicated such as incorporated as raw material for Portland cement and ceramic building materials remain at the laboratory testing stage. The main hurdle preventing EAF slag from being incorporated as a raw material for higher added value industrial applications is its inconsistent chemical composition. The chemical composition of EAF slag can vary based on the scrap metal used for steel production. For this, mineral separation techniques can be introduced to classify the EAF slag base on its physical and chemical compositions. We concluded that future research on recycling EAF slag should focus on separation techniques that diversify the recycling options for EAF slag, thereby increasing the waste product’s recycling rate
    corecore